IV B.Tech II Semester Regular Examinations, Apr/May 2007 FINITE ELEMENT METHODS
 (Common to Mechanical Engineering and Production Engineering)
 Time: 3 hours
 Max Marks: 80
 Answer any FIVE Questions
 All Questions carry equal marks

1. If a displacement field is described as follows,
$u=\left(-x^{2}+2 y^{2}+6 x y\right) 10^{-4}$ and $v=\left(3 x+6 y-y^{2}\right) 10^{-4}$
Determine the strain components $\epsilon_{\mathrm{xx}}, \in_{\mathrm{yy}}$, and ϵ_{xy} at the point $\mathrm{x}=1 ; \mathrm{y}=0$.
[16]
2. Explain the mathematical interpretation of finite element method for one dimensional field problems.
3. A cantilever beam is loaded with point load at end and Uniform distributed load throughout the beam of length L m. Explain how will you proceed with the solution using FEM?
4. (a) Using three point Gaussian quadrature find $\int x y d A$ for a triangular element whose vertices are $(1,1),(3,2)$, and $(2,3)$.
(b) Find the shape functions of a quadrilateral element in natural coordinates.
5. A composite slab consists of three materials of different thermal conductivities i.e 20 $\mathrm{W} / \mathrm{m} \mathrm{K}, 30 \mathrm{~W} / \mathrm{m}^{-}{ }^{0} \mathrm{~K}, 50 \mathrm{~W} / \mathrm{m}^{-}{ }^{0} \mathrm{~K}$ of thickness $0.3 \mathrm{~m}, 0.15 \mathrm{~m}, 0.15 \mathrm{~m}$ respectively. The outer surface is $20^{\circ} \mathrm{C}$ and the inner surface is exposed to the convective heat transfer coefficient of $25 \mathrm{~W} / \mathrm{m}^{2}-\mathrm{K}$ at $300^{\circ} \mathrm{C}$. Determine the temperature distribution within the wall?
6. Consider axial vibrations of the steel stepped bar as shown in figure6:
(a) develop global stiffness matrix and mass matrix,
(b) natural frequencies and
(c) mode shapes.

Figure 6
7. The coordinates of the nodes of a 3-D simplex elements are given below.

Node number	Coordinate of the node		
	X	Y	Z
i	0	10	0
j	10	0	0
k	0	15	0
l	0	0	20

Determine the shape function of the element.
8. (a) What is the necessity of determining Von misses stresses in finite element static analysis?
(b) Briefly explain about ANSYS software package.

IV B.Tech II Semester Regular Examinations, Apr/May 2007 FINITE ELEMENT METHODS
 (Common to Mechanical Engineering and Production Engineering)
 Time: 3 hours
 Max Marks: 80

 Answer any FIVE Questions

 Answer any FIVE Questions

 All Questions carry equal marks

 All Questions carry equal marks}

1. Explain briefly about the following:
(a) Variational method.
(b) Importance of Boundary conditions.
2. With a suitable example, explain the physical interpretation of finite element method for one dimensional analysis.
3. Define and derive the Hermite shape functions for a two nodded beam element?
4. (a) Show that the shape function at node $\mathrm{i}\left(\mathrm{N}_{i}\right)$, for the simplex triangle is one and zero at nodes j and k .
(b) The nodal displacements for the simplex two-dimensional element shown figure 4 b are $\mathrm{u}_{1}=2 \mathrm{~mm}, \mathrm{u}_{2}=6 \mathrm{~mm}, \mathrm{u}_{3}=-1 \mathrm{~mm}, \mathrm{v}_{1}=4 \mathrm{~mm}, \mathrm{v}_{2}=5 \mathrm{~mm}$ and $\mathrm{v}_{3}=8$ mm . Determine the displacement components at an interior point B $(10,10)$. The nodal coordinates (in mm) are given in parenthesis.

Figure 4b
5. A composite slab consists of three materials of different thermal conductivities i.e 20 $\mathrm{W} / \mathrm{m} \mathrm{K}, 30 \mathrm{~W} / \mathrm{m}^{-}{ }^{0} \mathrm{~K}, 50 \mathrm{~W} / \mathrm{m}^{-}{ }^{0} \mathrm{~K}$ of thickness $0.3 \mathrm{~m}, 0.15 \mathrm{~m}, 0.15 \mathrm{~m}$ respectively. The outer surface is $20^{\circ} \mathrm{C}$ and the inner surface is exposed to the convective heat transfer coefficient of $25 \mathrm{~W} / \mathrm{m}^{2}-\mathrm{K}$ at $300^{\circ} \mathrm{C}$. Determine the temperature distribution within the wall?
6. Determine the natural frequencies of a simply supported beam of length 800 mm with the cross sectional area of $75 \mathrm{~cm} \times 25 \mathrm{~cm}$ as shown in the figure6. Take $\mathrm{E}=200 \mathrm{Gpa}$ and density of $7850 \mathrm{~kg} / \mathrm{m}^{3}$.

Figure 6
7. (a) Explain the mesh generation schemes for 3-D problems.
(b) State the considerations governing the choice of finite elements to be used in three-dimensional problems.
8. With an example, explain the procedure involved in solving an engineering problem in computational finite element analysis using computer software.

IV B.Tech II Semester Regular Examinations, Apr/May 2007 FINITE ELEMENT METHODS
 (Common to Mechanical Engineering and Production Engineering)
 Time: 3 hours
 Max Marks: 80

 Answer any FIVE Questions

 Answer any FIVE Questions
 All Questions carry equal marks

1. Explain briefly about the following:
(a) Variational method.
(b) Importance of Boundary conditions.
2. With a suitable example explain the formulation of finite element equations by direct approach. Assume suitable data for the example. Use I-D analysis.
3. Starting from the first principles derive the stiffness matrix for a 1-d bar element and extend it for the plane truss element?
[16]
4. With suitable examples explain the meaning and formulations of properties of axisymmetric elements. State their applications.
5. The coordinates of the nodes of a triangular element are $1(-1,4), 2(5,2)$ and $3(3,6)$ of thickness 0.2 cm . The convection takes place over all surfaces with a heat transfer coefficient of $150 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ and $\mathrm{T} \propto=30^{\circ} \mathrm{C}$. Determine the conductivity matrix and load vector if the internal heat generation is $200 \mathrm{~W} / \mathrm{cm}^{3}$. Assume thermal conductivity the element is $100 \mathrm{~W} / \mathrm{m} \mathrm{K}$.
6. Derive the elemental mass matrix for 1-D bar element and 1-D plane truss element?
7. Derive strain displacement matrix (B) for four node tetrahedral element.
8. With an example, explain the procedure involved in solving an engineering problem in computational finite element analysis using computer software.

IV B.Tech II Semester Regular Examinations, Apr/May 2007 FINITE ELEMENT METHODS
(Common to Mechanical Engineering and Production Engineering)
Time: 3 hours
Max Marks: 80
Answer any FIVE Questions
All Questions carry equal marks

1. Discuss the following basic principles of finite element method.
(a) Derivation of element stiffness matrix.
(b) Assembly of Global stiffness Matrix.
2. With a suitable example explain the formulation of finite element equations by direct approach. Assume suitable data for the example. Use I-D analysis.
3. Define and derive the Hermite shape functions for a two nodded beam element?
4. Derive the shape functions for a triangular linear element in global Co-ordinate system.
5. Find the temperature distribution in the square plate as shown in figure5. Assume $\mathrm{K}=30 \mathrm{~W} / \mathrm{m} \mathrm{K}, \mathrm{T} \propto=50^{\circ} \mathrm{C}$ and $\mathrm{q}=100 \mathrm{~W} / \mathrm{m}^{3}$.

Figure 5
6. Derive the elemental mass matrix for 1-D bar element and 1-D plane truss element?
7. Explain the following semiautomatic mesh generation techniques
(a) Conformal mapping approach.
(b) Mapped element approach.
8. Give the necessity of rotating and offsetting the work plane in ANSYS environment. What are the useful features of CAEFEM package in analysis?

